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A (I< -+- Ii-dimensional real vector space U of real-valued functions defined
on a subset T of the real line is a Tchebycheff space (the linear space generated
by a Tchebycheff system) iff the number of zeros and the number of alternations
in sign of each nonzero element of U is at most k. We prove here that a necessary
and sufficient condition that U be a Tchebycheff space is that for any II <; k (not
necessarily distinct) points in T, there exists an element of U with exactly these
points as zeros (except for possibly k - n additional zeros), which alternates in sign
across each zero. Furthermore, it is proved that if U is a Tchebycheff space of
bounded functions, then the prescribed zeros can include points in the closure of
T, if for these points "is equal to zero at" is understood to mean "is asymptotically
zero at."

INTRODUCTION

Let §( T) denote the set of real-valued functions defined on a subset T
of the real line IR. A (k + I)-dimensional vector space U C /F(T) over IR
is a Tchebycheff space (T-space) iff the number of zeros and the number of
alternations in sign of each nonzero element of U is at most k. Various other
characterizations of T-spaces can be found in [1].

When U is the T-space with basis Ui(t) .= t i, i =', 0, ... , k, defined on some
interval [a, b], the following is true. Suppose L 1 , ZO, Zl , ... , Zm, with
Z_.] = --x, satisfy

i = 0, I, , m.

i = 1,2, , m.

Zi E [a, b],

-1 ·'S;m <k.

Then there exists a 1> E U such that

'I 1> Ii = I.

1>(z;) = 0,

t E ]Zj-l , z;[ =? (-l)j 1>U) < 0,
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i = 0, I, ... , m.

j = 0, 1, ... , (m + I)

(I)

(2)

(3)

(4)

(5)

(6)
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(with ::.,,, 1 ex). Of course f is the polynomial (appropriately normalized)
with exactly the m 1 prescribed zeros ::.() ,... , ::.", .

This result was stated by Krein for T-spaces of continuous functions on ~t

closed interval [3, Lemma 3.4, p. 43] but was proved only for 111 Ii I
(or when consecutive pairs of z;'s coincided); this result playing a fundamental
role in his beautiful study of the geometry of moment spaces. However. for
arbitrary T-spaces the former result (general III) is not exactly truc. In order
to be true the strict inequality in (6) must be replaced by i I \i <6U) ()
even for T-spaces of continuous functions defined on a closed interval.
Indeed, the example given by Zielke [4] of a T-space of degree ~ generated
by I, t sin t, t cos ton [0, 7T] has the property that any clement with a len)
at °must also have another zero.

However, if m Ii 1 (i.e .. the number of prescribed zero, h I,) and the
prescribed zeros are distinct. then the strict inequality in (6) does obtain.
inasmuch as an element of a T-space of degree Ii can have no more than 1\
distinct zeros.

We prove here the corrected version of Krein's Lemma 3.4 (replacing
by in (6)) and our proof is vaild for T-spaces of arbitrary functions detlnecl
on an arbitrary subset of IR. This is the content of Lemma 2.3 below.

Conversely, we prove that a sufficient condition for a (Ii I)-dimensionai
linear subspace U C .JF(T) to be a T-space is that whenever the inequality (~)

is strict and III k I then (5) and (6) obtain. Hence, the existence of
such a f having k prescribed zeros and the alternation property (6) gives
another characterization of T-spaces:

THEOREM. A (Ii I )-dil11ensional real linear subspace l J-c( T) is (/
T-space if and only iffor each set of Ii distinct points in T there i.\ a cP L (

such that f has precisely these points as zeros, and alternates in sign across
each zero.

This is proved in Section I below.
In general when T is not closed or the elements of U are not continuous.

it is useful to generalize the concept of a zero of a function to include points
at which the function is asymptotically zero (this is needed, for example.
to prove the oscillation theorem in [2]). We define a point t c=R to be an
asymptotic zero of 1I E .~( T) if there exists a sequence Un) C T such thal

lim t n
1/

and lim lI(t,,)
n

o.

When U C .'.:8( T), the set of bounded functions on T, we prove that the
Lemma 2.3 below referred to previously remains true if any of the prescribed
zeros are replaced by prescribed asymptotic zeros. In fact. for the prescribed
asymptotic zeros, the associated sequence (tn) may also be prescribed.
up to a subsequence thereof. This is the content of Theorem 2.4 helo\\



PRESCRIBED ALTERNATIONS IN T-SPACES 145

This theorem is proved in four steps. When the number of prescribed zeros
is k (the degree of the T-space concerned) it is simple to construct a ~

satisfying (4)-(6). In Lemma 2.1 we show that this obtains for asymptotic
zeros as well, except that the inequality in (6) may not be strict.

In Lemma 2.2, we prove the fundamental theorem for the case when the
z/s are distinct zeros, but may number fewer than k. In this case we find ~

to be a uniform limit of polynomials each having k zeros. We pick the extra
zeros in such a way that in the limit these zeros do not give rise to extra
alternations in sign.

Tn Lemma 2.3 we show that a ~ can be chosen which has an actual zero
at as many as k (not necessarily distinct) points (thus allowing for "double
zeros").

Finally, in Theorem 2.4 we add to Lemma 2.3 the possibility of asymptotic
zeros for which, in addition, the associated sequence Un) may be prescribed
(up to a subsequence thereof).

In Section 2 we require that the elements of U be bounded in order that U
have the topology of uniform convergence induced by the sup norm II . Ii
(rather than merely the topology of pointwise convergence induced by the
c2-norm I: . 1!2)' Of course, on any finite-dimensional subspace of .rJ6(T), the
sup norm and the t2 norm induce the same topology.

We denote the set of positive integers by N.

1. A CHARACTERIZATION

THEOREM. For some T C IR suppose U C .'F(T) is a (k + I)-dimensional
real vector space. Then U is a T-space of degree k (ff the folloWing hold~:

For every z,., i = -1,0, I, ... , m (with Z_l = -- (0) if

Z,. EO T, i = 0, I, ... , m,

Z"-l < z,. , i = I, 2, ... , m,

m = k -- I,

then there exists a r{J EO U such that

(1.1)

(1.2)

(1.3)

i = 0, I, ... ,m,

I) r{J 112 = I,

r{J(Z,.) = 0,

tEO ]Z,-1 , Zi[ n T => (-1)1 r{J(t) < 0,

with Zm+l = + 00.

Proof (=» Trivial.

j = 0, 1, ... , m + 1

(1.4)

(1.5)

(1.6)
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It can be easily shown that for every nonzero 1/ U. the number

of distinct zeros of 11: 7(11) k. Next. we show that any I/'~ U which has

exactly k zeros cannot have any alternations in sign hetween two comecutive

zeros. Suppose '(J U such that tfil.~;) O. ( O. I ..... k I and

~tl'::1 .~; i' Furthermore suppose there e.\isb r. r ,uch thetL
t, t' E ].:, I • ~,[ Ii T and diU) '()(t') O. NO\\ let 4) be ,111 clement of C with

zeros precisely at the point<: -, . i - O. 1..... k 1. But from (1.6) there nish

an <'- such that'T II; has in addition to the zeros ::,. i - O. I. ... k I
a zero at tor 1'. which contradicts the facl that Z(u) k for every 0 iI L.

Thus, (see [I. (4.12)]) the indicator function

/(iI)

7(11)

if S"(;I)

if S"(I/ J

o
o

satisf1es /v (II) k for all :lOnzcro /I, C, whence U i, a T-space (of degree kl.

(2.1) LL\1'V1A. For .10111(' ! ,.- lc:; SllfJ1W.\(' C

Ld ~II" i O. I..... III. Ii . {(nd::;. j
sati.lfv:

.;/J( T) is a 7'-,\,/)(!CC (~(degr('c i\.
l. n. I. .... Iil (with:: If)

O. 1..

VII -l; 1) Ii

11/ I.

1• .:' ....• III. (.:'.! .. )

(.:'.1.3)

Thcn the/c exists a J; C such that

! . (2 1-1)

, .
~ni ' I lilC}; r!wr lim U. i ...

].:: l' -~![ Ii T 1)' ,pU) 0;

0.1 .... IIi Y. 121.6)

Proof From Section I it follows that for each /I there exisb a ,1" U
such that

(a) Til I.

ib) Tn(::,,,) 0 for 0, I ..... m. If

(c) 1::: Ill, ::,[ r i )i t \

- ii' f. -- i);,

(1. i O. I .... ii! \','irh
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Since U is a finite-dimensional real vector space

1J = {u E U lui = l}
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is compact. Therefore since cPn E 1J for all n E N, there exists a subsequence
cPn; , i EN, and a cP E 1J such that

(d) II cPn; - cP If < (I/i), i EN (since . and II . ,12 are equivalent on U).

That cP satisfies (2.1.4)-(2.1.6) is an elementary calculation.

(2.2) LEMMA. For some T C iR, suppose U C PI/(T) is a T-space ofdegree k.
Let Zj , j = -1,0, 1,... , In (with L 1 ~= ~ (0) satisfy

Zj E T,

-I~m<k.

Then there exists a cP E U sl/ch that

.i = 0, I, , m.

j = 1,2, , m.

(2.2.1)

(2.2.2)

(2.2.3)

i cP Ii = 1.

¢(zJ = 0 j = 0, I, ... , m.

t E [Z;_l , .::";] n T =>- (-I)j ¢(t) 0; j = 0, 1,..., In + 1

with z"'+1 = + 00.

(2.2.4)

(2.2.5)

(2.2.6)

Proof If m = k - I this lemma follows trivially from Lemma 2.1.
When m < k - I we pick a sequence of elements cPn E 1J (the unit sphere)
each having exactly k zeros, as in Lemma 2.1. The zeros of cPn are the
prescribed z/s together with as many extra zeros as necessary. These extra
zeros will, in the limit, all lie in ]-- ro, z] n Tfor some z such that cPn(t) = 0
for all t E ] - .. 00, z] n T. This point z is so chosen that for each n the extra
zeros of cPn are in ]_. ro, z] n T or are elements of a sequence converging to z.
The point z is the infimum of the set of points t E T such that whenever
Zj ,,:; t < Zj+l' card]- 00, t] n T?;:- k - In + j. Thus, either there are just
enough points in ] - 00, z] n T for the extra zeros or z is an accumulation
point of T from the right.

To this end, define

z = inf{t E T i z; t < Zj+1 =>- card]- 00, t] n T?;:- k - m + j
for.i = -1,0,... , m}.

Then Z < + 00 since card T ?;:- k + 1, and there exists an i such that Zi ~

z < Zi+l (--1 ~ i ,,:; m). By the definition of z, card]- ro, z] n T ~

k - m + i with strict inequality holding only if z is an accumulation point
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of T from the right. Define s by eardJ- C;~,::} 1\ T .\ i- i 1. Then
m -, 1 k - s. The .\ \ points of ]x. ::1 I T of course ineiude
the i prescribed zeros ::0 . :) ..... ::i .

We now pick certain points Sin' t, satisfYll1l:: the assumptions fOi

and z, of Lemma 2.1. The polynomiDJ d) given by Lemma 2.1 :\atisiics the
requirements of Lemma 2.2.

Label the elements of] [f_, :::] n} in lilelr n,,~uLll order as ~..
J 0, \ ..... ,\ i and for every i1;_ set tin ::;.} 0, L... , .', (.

If It (III i) 0 then 2 must be an accumulation point of"l I"rom
the right and since:. :." 1 there exist Sip, for all il L • I \\ i 1L. ..
(k \111 I) - i) such that

c
S ),

and

Inn f
"

I L. U.

Ifi III I then I,
k I define

Iii n i. ...

" 1 fur <1.11 Ii

It is clear from the deimitions of :md \_2.2) that

t ... n l:. I.

::. for all i:'

,~,.L i;

; I;; .

Hence S ~ J 0, I.

conditions of Lemma 2.1, \\hence dielc lXlsh Ii

where :)1' , :i are rcplaetd
and since for each j . O. )
it follows from (2.\.5) that (_2.5) boleb.

Since all the elerncnts ol"} ce,:] n '..cre ,jl;"'Cf! ~,o x",\" ,,' 4·, cencii",,:,
(2.2.6) is triviallY \criLcd .1' I _, Fe; " ""' :~\' )
and hence frOlYi (a) above i l. lL I lUi,11 • Ii" 11 j. -1 here Curc 1'r"m (2 i ,C,:
(with ZJ replaced by [,) (1) \1 • U. Fence c;;.;1\:1' i \

satisfies (2.2.6) depending on whether k - (m 1) is C\C" u\' (,dd, r"~f'lC-

tively. Since cPU) satiSfies (2.2.4), (:\.2.5), (. I) ; (/)(1) satistic~, "j

(2.2.6).

(2.j) LLMMA. For some T C .\lIppe.le t. /( 1) is (i -"puce oj degr,,' I ..

I.et :; ,j • l. 0, J , ••. , Ii' (with ;:'. I C'l.) saiisf\'

_. .... '/., j 3.! \

j. ,2 .... , 1/1, (:'.3.21
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Then there exists a cP E U such that
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Ii cP Ii = l.

cp(Zj) ,= 0 j = 0, I, ... , m.

t E [Zj-I , Zj] n T> (-1)5 cP(t) ~ °
j= 0, 1, ... ,m+ 1

(2.3.4)

(2.3.5)

with zm+1 = +00. (2.3.6)

Proof. Because of the parity of oscillation in (2.3.6), it may as well be
assumed that

(a) Zj <: Zj~z,j = 0, 1, ... , m - 2.

In addition we can assume:

(b) Zj = Zi+1 <: + 00 c? ]Zi+1 , Zi+z[ n T 7'0 (Z', j = 0,... , m - l.

fndeed, when Zj =, Zj+1 < -+ 00 and ]Zj+1' Zi+z[ n T ~~ we can replace
{L1 , Zu , ... , zm} by {Z'_1' z'o , ... , Z'rrt+1} such that z/ = z,: if i 'F j -+ I and
Z'j+l = zHZ' Then the conclusions of this lemma hold with Zi replaced by Z'i

iff they hold with z, .
With assumptions (a) and (b) we pick certain Zjn E T (for j = 0, 1,... , m

and 11 EN) such that for each 11 (with Z-1n ~= - (0) they satisfy the require­
ments of Lemma 2.2. Whence we get a CPn satisfying (2.2.4)-(2.2.6) for Zin .

By appropriately choosing Zin we show that a limit of CPn satisfies (2.3.4)­
(2.3.6).

Define, for j = 0, 1, ... , m, Zjn as follows. If Zj <: Zj+1 then let Zjn = Zj

for all n. If Zj = Zj+1 then let tj ,= inf]zj , Zi+2[ n T. Then tj E [Zj , Zi+z[

from (b). If t j is an accumulation point of T then define Zj+1n such that
Zjn <: Zi+1n < ZHZ and Zj+1n converges to gj • If gj is not an accumulation
point then tj E ]zi , Zi+2[ n T so pick Zj+1n = gj for all 11. Notice that in
either case nn ]Zjn , Zj+1n[ n T =, r;j whenever Zj = Zj+1 . Using (a), (b) it is
easily shown that such Zjn always exists and Zin < Zj+1n for j == 0, 1, ... , m
and 11 EN.

For each n, then from Lemma 2.2 we have CPn such that

II CPu Ii = I,

CPn(Zjn) = 0,

t E }Zj-1n, Zjn[ n T * (-I)i cp(t) ~ ° j = 0, 1,... , m with Zm+1n = + 00.

Since ep = {u E U Iii u if = I} is compact there is cP E ep such that for some
n,: , i EN, II CPn. - cP il <: 2-': since U C !JB(T). Thus as in the proof of Lemma
2.1 it follows that there is cP satisfying (2.3.4)-(2.3.6).

(2.4) THEOREM. For some TC IR; suppose UC !JB(T) isa T-spaceofdegreek.
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Let :::jn ,./
satisfy:

0,1, .... 111, n E N, and:::j.j I. 0, I ..... III (with :: I :c)

\/17 E N. ::'11 T,::; c cl T al7d li,~l1 ::}I' O. I.. Ill. (2-.+.1)

VII :\J,:::" Iili

Then there exists a cP ec: U such that

cP

.:.. J /I

1/1

I.

f·;\.

I. 2.... Ii!. (2..+.2)

(2.-13,

(2'-+'-+)

317; , i ',C i'ceJ such that lim cp(::j,,), o O. ! .... Iii (2.4.5 )

t E JZi ]. ::;[ n r I)' CPU) 0:

J 0, L ... ,III I H'i/Ii::", ; '/ (24.6)

Proof From Lemma 2.3, for each /l E N, there exists a cP., lj such that

(I) . CPII 1.

(2) ~n(:::j,,) 0, j 0, I, ... , III.

(3) t E [:::j-l>1' :::jnJ n T (,. IV cpU)
- -- t i'i X ~ ::(.111 I 1) TI u..., .

0, O,I ..... (iIl 1) with

Once again using the compactness of (p and replicating the proof in
Lemma 2.1 it follows that a cb U satisfying (2.4.4)(2.4.6) exists.
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