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A (k + 1)-dimensional real vector space U of real-valued functions defined
on a subset 7 of the real line is a Tchebycheff space (the linear space generated
by a Tchebycheff system) iff the number of zeros and the number of alternations
in sign of each nonzero element of U is at most k. We prove here that a necessary
and sufficient condition that U be a Tchebycheff space is that for any # < k (not
necessarily distinct) points in 7, there exists an element of U with exactly these
points as zeros (except for possibly k& — n additional zeros), which alternates in sign
across each zero. Furthermore, it is proved that if U/ is a Tchebycheff space of
bounded functions, then the prescribed zeros can include points in the closure of

7, if for these points *‘is equal to zero at™ is understood to mean “'is asymptotically
zero at.”

INTRODUCTION

Let .#(T) denote the set of real-valued functions defined on a subset T
of the real line R. A (k + 1)-dimensional vector space UC #(T) over R
is a Tchebycheff space (T-space) iff the number of zeros and the number of
alternations in sign of each nonzero element of U is at most k. Various other
characterizations of T-spaces can be found in [1].

When U is the T-space with basis u,(t) = t?, i = 0,..., k, defined on some
interval [a, b], the following is true. Suppose z_,,z,, 2y sos Zm, With
z_y = -— oo, satisfy

z; € la, b), i=0,l1,..,m. (1)
i K2, i=12,.. m (2)
-1 <m < k. (3)
Then there exists a ¢ ¢ U such that

Pl =1 4
d(z;) = 0, i=0,l1,.,m (5)
telz; g,z = (=1 $(t) <0, j=0,1.,(m-+1) (6)
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(with z,,., - = o¢). Of course ¢ is the polynomial (appropriately normalized)
with exactly the m - | prescribed zeros z, ..., Z,, .

This result was stated by Krein for T-spaces of continuous {functions on u
closed interval [3, Lemma 3.4, p. 43] but was proved only for mi &k |
{or when consecutive pairs of z,’s coincided); this result playing a fundamental
role in his beautiful study of the geometry of moment spaces. However. for
arbitrary T-spaces the former result (general m) is not exactly true. fn order
to be true the strict inequality in (6) must be replaced by 1y &ry 0.
even for 7T-spaces of continuous functions defined on a closed interval.
Indeed. the example given by Zielke [4] of a 7-space of degree 2 generated
by L. fsint, fcost on [0, #] has the property that any element with a zero
at 0 must also have another zero.

However, if m ~ & -1 (i.e., the number of prescribed zeros 1s 4) and the
prescribed zeros are distinct. then the strict inequality in (6) does obtain.
nasmuch as an element of a 7-space of degree k can have no more than #
distinct zeros,

We prove here the corrected version of Krein's Lemma 3.4 (replacing -
by = in (6)) and our proof is vaild for T-spaces of arbitrary functions defined
on an arbitrary subset of R. This is the content of Lemma 2.3 below.

Conversely, we prove that a sufficient condition for a (A 1)-dimensional
linear subspace U C .#(T) to be a T-space is that whenever the inequality (2)
is strict and m = & - | then (5) and (6) obtain. Hence. the existence of
such a ¢ having k prescribed zeros and the alternation property (6) gives
another characterization of T-spaces:

THEOREM. A (k + [)-dimensional real linear subspace U2 F#(T) s «
T-space if and only if for each set of k distinct points in T there is a ¢ c U
such that & has precisely these points as zeros, and alternates in sign across
each zero.

This is proved in Section | below.

In general when T is not closed or the elements of U are not continuous.
it is useful to generalize the concept of a zero of a function to include points
at which the function is asymptotically zero (this is needed, for example.
to prove the oscillation theorem in [2]). We define a point 1= R to be an
asymptotic zero of ue . #(T) if there exists a sequence (7,,) C T such that

lhmzi, : 1 and lim u(z,) - O.
n n

When U C #4(T), the set of bounded functions on T, we prove that the
Lemma 2.3 below referred to previously remains true if any of the prescribed
zeros are replaced by prescribed asymptotic zeros. In fact. for the prescribed
asymptotic zeros, the associated sequence (f,) may also be prescribed.
up to a subsequence thereof. This is the content of Theorem 2.4 below.
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This theorem is proved in four steps. When the number of prescribed zeros
is k (the degree of the 7-space concerned) it is simple to construct a ¢
satisfying (4)-(6). In Lemma 2.1 we show that this obtains for asymptotic
zeros as well, except that the inequality in (6) may not be strict.

In Lemma 2.2, we prove the fundamental theorem for the case when the
z;’s are distinct zeros, but may number fewer than k. In this case we find ¢
to be a uniform limit of polynomials each having k zeros. We pick the extra
zeros in such a way that in the limit these zeros do not give rise to extra
alternations in sign.

In Lemma 2.3 we show that a ¢ can be chosen which has an actual zero
at as many as & (not necessarily distinct) points (thus allowing for “double
zeros’’).

Finally, in Theorem 2.4 we add to Lemma 2.3 the possibility of asymptotic
zeros for which, in addition, the associated sequence (z,) may be prescribed
(up to a subsequence thereof).

In Section 2 we require that the elements of U be bounded in order that U
have the topology of uniform convergence induced by the sup norm | - ||
(rather than merely the topology of pointwise convergence induced by the
{y-norm | - |ly). Of course, on any finite-dimensional subspace of #(7), the
sup norm and the /, norm induce the same topology.

We denote the set of positive integers by N.

1. A CHARACTERIZATION

THEOREM. For some T C R suppose UC F(T) is a (k + 1)-dimensional
real vector space. Then U is a T-space of degree k iff the following holds:

Foreveryz;,i = —1,0,1,...,m (withz_; = —0) if
z;eT, i=0,1,..,m, (1.1)
Ziq < Zp, i=12,.,m, (1.2)
m=k—1, (1.3)

then there exists a ¢ € U such that
Nl =1, (1.4)
d(z) = 0, i=0,l,..,m, (1.5)
telzia,z N T = (=Y d1) <0, j=01..m+1 (L6
With Z, .4 = + 0.

Proof. (=) Trivial.
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() [t can be easily shown that for every nonzero u ¢ U, the number
of distinct zeros of u: Z(u) k. Next, we show that any w = {7 which has
exactly k zeros cannot have any alternations in sign between two consecutive
zeros. Suppose ¢ U such that Jtzy 0. @ 0,1, IS I and
Zy <.y - ol .. Furthermore suppose there exists 7. ¢ such that
tt'elz oo Tand ) (e - 0. Now let ¢ be an element of £ with
zeros precisely at the points =; .7 - 0. 1., I8 1. But from (1.6) there exists
an o such that ad - 4 has in addition to the zevos -, 7 = 0, L. &
a zero at t or t', which contradicts the fact that 76y A foreveryd — w (.

Thus, (see [1. (4.12)]) the indicator function

N YA it S 0
Zan | it S%an 0

satisfies M) -~ & for all nonwero v U, whence U is a T-space (of degree 4).

2. THE EXISTENCE OF Funenions WITH PRESCRIBED ALTERNATIONS

(2.1) Lesva. For some 10 R suppose U BT is a T-space of degree k.
Let z;, ./ ~ 0.1..... mene fuoand =L O Lo twith - V)
satisfy:

VYneN o e i ol T ound iz, ool AV N ORI 2000
"

AT ZGoow o D / o2 m (2.0

mooK f (2.1.3)

Then there exists a ¢« U such that
b {. 1204

Aa, L de N osueh thar im Gz, 0 gy (S0 B i (215

iy

]

PR A T By fowith z, o 0)

Proof. From Section | it follows that for cach # there exists a &, - U
such that

(@ ¢, L

(b)y .0z, Ofori -0 1., o e Y,

(©) 1< lze oz ey 0 T dan O, 0.V bowrth
- - .

-t SR R
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Since U is a finite-dimensional real vector space
Q= {ueclU|iui =1}

is compact. Therefore since ¢,, € @ for all n e N, there exists a subsequence
b, , €N, and a ¢ € D such that

(d) I dn, — ¢ < (1/i), ie N(since || - and || - |, are equivalent on U).

That ¢ satisfies (2.1.4)-(2.1.6) is an elementary calculation.

(2.2) Lemma.  For some T C R, suppose U C #(T) is a T-space of degree k.

Letz;,j= —1,0,1,..., m (With z_, = — o0) satisfy
z;eT, j=0,1,..,m. (2.2.1)
Ziiy <2 i, j=1,2,.,m. (2.2.2)
—1 <m < k. (2.2.3)

Then there exists a ¢ € U such that
Chll = 1. 2.24)
dlz) =0 j=0,1,.,m. 2.2.5)
tefz; 1,z INT = (=1 ) <0 j=01..,m+1 (226)
with z,, .4 = + 0.

Proof. If m = k — 1 this lemma follows trivially from Lemma 2.1.
When m < k — 1 we pick a sequence of elements ¢, € @ (the unit sphere)
each having exactly k zeros, as in Lemma 2.1. The zeros of ¢, are the
prescribed z;’s together with as many extra zeros as necessary. These extra
zeros will, in the limit, all lie in ]-— oo, z] N T for some z such that ¢,(t) = 0
for all 1€ ]— o0, z] N 7. This point z is so chosen that for each n the extra
zeros of ¢, are in |— oo, z] N T or are elements of a sequence converging to z.
The point z is the infimum of the set of points € T such that whenever
z; Lt < 2y, card]— o0, 1] N T = k — m + j. Thus, either there are just
enough points in |- o0, z] N T for the extra zeros or z is an accumulation
point of T from the right.

To this end, define

z=1nf{teT|z; <t <z, = card]—o0, 1 1NT 2k —m+j
for j = —1,0,..., m}.

Then z < 4 o0 since card T > k -+ 1, and there exists an 7 such that z; <
z < zgy (=1 <i<m). By the definition of z, card]—w,z]NT <
k — m -~ i with strict inequality holding only if z is an accumulation point

640/21/2-3
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of T from the nght. Define 5 by card}— o, 2 0 7T == 5 57 -- 1L Then
m—- 1 <.k -5 The s -7 - Upoints of 1+ w.21 T of course inciude
the i — 1| prescribed zeros zy . z; ..o 2, -

We now pick certain points &, , & satisfying the assumptions foi
and z; of Lemma 2.1. The polynomial ¢ given by Lemma 2.1 satisiles the
requirements of Lemma 2.7,

Label the elements of |- -oo, 2]/ i thewr nwwural order as ¢

J= G by fandforevery ne Mset &, - &)= O lny 0
Wih- s (o 1y 0then z must be an accumutation point of 7' [rom
the right and since = <. 7, thereexist &, forall we B (v i+ Do

(k {n1 - 1) - i) such that

RS
and
fm &, = oL PRI P {11 N
1
Wism - Tthenk w0 [+ b Linthiscuselory - & - -
k-1 defin
{ay &0 &0 o dorath e

It is clear from the definitions of &, and (.2.2.2) that
Yi e RN, Eol S R ST TR

Hence &,, . &, - 0, i 04 boamaiy penb
conditions of Lemma 2.1, whence thaie casts o & sai
where =, , z; are replaced by £, . &, respecinvely.
and since for cach f -~ O, 1. s thore is o p such o ¢
it follows from (2.1.5) thut {2.2.5) holds.

Since all the elements of |- o, J T veere chosen a3 zeros oF d condition

(2.2.6) 1s trivially veritied f £z Tev 0 10w ;;_ LoD E
and hence from (a) above 1 ¢ € 1ty - €l & ixc:'cibrc Trom (210

1
(with z; replaced by &) (- 1)y v Wiy - 00 Henee eliner M) or
satisfies (2.2.6) depending on whether k - (- 1y is even ov odd, ¢ ¢
tively. Since ¢{r) satisfies (2.2.4), (2.2.5), (= Ly 07 dir) satistios (2.2
(2.2.6}.

2.3y Levmma.  Forsome T 0L suppose U 0 m(ly is ¢ Tspace of degiee i

letz,, )= VO L, i (with 2o -~ o) salisfy
NN N Jos b, i (230
Zoa eI, Foeeh 2o (237
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Then there exists a ¢ € U such that

Id) = 1. (2.3.4)
Hz) =0 j=01,.,m (2.3.5)

tefzi,zINT = (—1Y $(1) <0
J=01L..m-+4 1 with z,,=-+wx (23.6)

Proof. Because of the parity of oscillation in (2.3.6), it may as well be
assumed that

() z; < zj5,j=0,1,...m—2
In addition we can assume:
b)) zy=z;4 < F+0 =i,z T = &,]=0.,m— L

Indeed, when z; = z;,; < 4-00 and lz;,1, z;l N T == & we can replace
{24,254y Z) DY {2° 4, Z'y 5oery 200} such that z;" = z; if i 52 j <+ | and
Z';11 = Zi.s - Then the conclusions of this lemma hold with z; replaced by z’;
iff they hold with z; .

With assumptions (a) and (b) we pick certain z;, € 7 (for j = 0, 1,..., m
and » € N) such that for each n (with z_,, == — o) they satisfy the require-
ments of Lemma 2.2. Whence we get a ¢, satisfying (2.2.4)-(2.2.6) for z;, .
By appropriately choosing z;, we show that a limit of ¢, satisfies (2.3.4)-
(2.3.6).

Define, for j = 0, 1,..., m, z;, as follows. If z; << z;, then let z;, = z;
for all n. If z; = z;,, then let & = inflz;, z; [ N 7. Then &€z, z;..[
from (b). If £; is an accumulation point of 7 then define z,,;, such that
Zin < Zijn < Zje and z;,q, converges to & . If & is not an accumulation
point then &; € Jz;, z;.[ N T so pick z,.4, = & for all n. Notice that in
either case (), 1zjn > Zjyqnl N T = & whenever z; = z;,; . Using (a), (b) it is
easily shown that such z;, always exists and z;, << z;,4, for j = 0, 1,..., m
and n e N.

For each n, then from Lemma 2.2 we have ¢, such that

I nli =1,
¢n(2m) == 0,
t€lziiqn, Zin O T = (—1Y $(t) << 0 j=0,1,..,mwith z,,,,, = 00,

Since @ = {ue U||u|| = 1} is compact there is ¢ € @ such that for some
n;,ieN,| 95% — ¢ || < 27%since U C Z(T). Thus as in the proof of Lemma
2.1 it follows that there is ¢ satisfying (2.3.4)-(2.3.6).

(2.4) THEOREM. For some T C R suppose U C B(T) is a T-space of degree k.
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Let =, j==0,1,...mneN, and z; , j - 1.0, 1..... m with =, %)
satisfy:

YneN, z, T, z;ecl Tand li,llﬂ Zin : A U DOV 2.4

Vire N, Z¢ogu o T J L2 . (12.4.2)

l m k. {2.4.3)

Then there exists a ¢ & U such that
é [ (2.4.4)
iy, ie N osuch thar fim @(z;, ) - O i 00 (2.4.3)

teln ot T ooy By O
oo 00w bwith, - V.. (2.4.6)

Proof. From Lemma 2.3, for each # € N, there exists a &, = LU such that

m ¢, - L

(2) Pulep) == 0.7~ 0.1 om.

(3) relziy . zpdn T o (1) (f’(t) 0, J 0, 1..... (i 1) with
San T 70 Dy e T 9L

Once again using the compactness of @ and replicating the proof in
Lemma 2.1 it follows that a ¢é & U satisfying (2.4.4)-(2.4.6) exists.
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